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Figure 1: By connecting LLM with multimodal adaptors and diffusion decoders, NExT-GPT achieves
universal multimodal understanding and any-to-any modality input and output.

Abstract

While recently Multimodal Large Language Models (MM-LLMs) have made
exciting strides, they mostly fall prey to the limitation of only input-side multimodal
understanding, without the ability to produce content in multiple modalities. As
we humans always perceive the world and communicate with people through
various modalities, developing any-to-any MM-LLMs capable of accepting and
delivering content in any modality becomes essential to human-level AI. To fill
the gap, we present an end-to-end general-purpose any-to-any MM-LLM system,
NExT-GPT. We connect an LLM with multimodal adaptors and different diffusion
decoders, enabling NExT-GPT to perceive inputs and generate outputs in arbitrary
combinations of text, images, videos, and audio. By leveraging the existing
well-trained highly-performing encoders and decoders, NExT-GPT is tuned with
only a small amount of parameter (1%) of certain projection layers, which not
only benefits low-cost training and also facilitates convenient expansion to more
potential modalities. Moreover, we introduce a modality-switching instruction
tuning (MosIT) and manually curate a high-quality dataset for MosIT, based on
which NExT-GPT is empowered with complex cross-modal semantic understanding
and content generation. Overall, our research showcases the promising possibility
of building an AI agent capable of modeling universal modalities, paving the way
for more human-like AI research in the community.
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1 Introduction
Recently, the topic of Artificial Intelligence Generated Content (AIGC) has witnessed unprecedented
advancements with certain technologies, such as ChatGPT for text generation [59] and diffusion
models for visual generation [21]. Among these, the rise of Large Language Models (LLMs) has been
particularly remarkable, e.g., Flan-T5 [13], Vicuna [12], LLaMA [80] and Alpaca [79], showcasing
their formidable human-level language reasoning and decision-making capabilities, shining a light on
the path of Artificial General Intelligence (AGI). Our world is inherently multimodal, and humans
perceive the world with different sensory organs for varied modal information, such as language,
images, videos, and sounds, which often complement and synergize with each other. With such
intuition, the purely text-based LLMs have recently been endowed with other modal understanding
and perception capabilities of visual, video, audio, etc.

A notable approach involves employing adapters that align pre-trained encoders in other modalities
to textual LLMs. This endeavor has led to the rapid development of multimodal LLMs (MM-LLMs),
such as BLIP-2 [43], Flamingo [1], MiniGPT-4 [110], Video-LLaMA [104], LLaVA [52], PandaGPT
[77], SpeechGPT [103]. Nevertheless, most of these efforts pay the attention to the multimodal
content understanding at the input side, lacking the ability to output content in multiple modalities
more than texts. We emphasize that real human cognition and communication indispensably require
seamless transitions between any modalities of information. This makes the exploration of any-to-any
MM-LLMs critical to achieving real AGI, i.e., accepting inputs in any modality and delivering
responses in the appropriate form of any modality.

Certain efforts have been made to mimic the human-like any-to-any modality conversion. Lately, CoDi
[78] has made strides in implementing the capability of simultaneously processing and generating
arbitrary combinations of modalities, while it lacks the reasoning and decision-making prowess of
LLMs as its core, and also is limited to the simple paired content generation. On the other hand,
some efforts, e.g., visual-ChatGPT [88] and HuggingGPT [72] have sought to combine LLMs with
external tools to achieve approximately the ‘any-to-any’ multimodal understanding and generation.
Unfortunately, these systems suffer from critical challenges due to the complete pipeline architecture.
First, the information transfer between different modules is entirely based on discrete texts produced
by the LLM, where the cascade process inevitably introduces noise and propagates errors. More
critically, the entire system only leverages existing pre-trained tools for inference only. Due to the
lack of overall end-to-end training in error propagation, the capabilities of content understanding
and multimodal generation can be very limited, especially in interpreting intricate and implicit user
instructions. In a nutshell, there is a compelling need for constructing an end-to-end MM-LLM of
arbitrary modalities.

In pursuit of this goal, we present NExT-GPT, an any-to-any MM-LLM designed to seamlessly
handle input and output in any combination of four modalities: text, images, videos, and audio. As
depicted in Figure 1, NExT-GPT comprises three tiers. First, we leverage established encoders to
encode inputs in various modalities, where these representations are projected into language-like
representations comprehensible to the LLM through a projection layer. Second, we harness an
existing open-sourced LLM as the core to process input information for semantic understanding and
reasoning. The LLM not only directly generates text tokens but also produces unique “modality
signal” tokens that serve as instructions to dictate the decoding layers whether & what modal content
to output correspondingly. Third, the produced multimodal signals with specific instructions, after
projection, route to different encoders and finally generate content in corresponding modalities.

As NExT-GPT encompasses encoding and generation of various modalities, training the system
from scratch would entail substantial costs. Instead, we take advantage of the existing pre-trained
high-performance encoders and decoders, such as Q-Former [43], ImageBind [25] and the state-
of-the-art latent diffusion models [68, 69, 8, 2, 51, 33]. By loading the off-the-shelf parameters,
we not only avoid cold-start training but also facilitate the potential growth of more modalities.
For the feature alignment across the three tiers, we consider fine-tuning locally only the input
projection and output projection layers, with an encoding-side LLM-centric alignment and decoding-
side instruction-following alignment, where the minimal computational overhead ensures higher
efficiency. Furthermore, to empower our any-to-any MM-LLM with human-level capabilities in
complex cross-modal generation and reasoning, we introduce a modality-switching instruction tuning
(termed Mosit), equipping the system with sophisticated cross-modal semantic understanding and
content generation. To combat the absence of such cross-modal instruction tuning data in the
community, we manually collect and annotate a Mosit dataset consisting of 5,000 samples of high
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quality. Employing the LoRA technique [32], we fine-tune the overall NExT-GPT system on MosIT
data, updating the projection layers and certain LLM parameters.

Overall, this work showcases the promising possibility of developing a more human-like MM-LLM
agent capable of modeling universal modalities. The contributions of this project are as follows:

• We for the first time present an end-to-end general-purpose any-to-any MM-LLM, NExT-
GPT, capable of semantic understanding and reasoning and generation of free input and
output combinations of text, images, videos, and audio.

• We introduce lightweight alignment learning techniques, the LLM-centric alignment at
the encoding side, and the instruction-following alignment at the decoding side, efficiently
requiring minimal parameter adjustments (only 1% params) for effective semantic alignment.

• We annotate a high-quality modality-switching instruction tuning dataset covering intricate
instructions across various modal combinations of text, images, videos, and audio, aiding
MM-LLM with human-like cross-modal content understanding and instruction reasoning.

2 Related Work
Cross-modal Understanding and Generation Our world is replete with multimodal information,
wherein we continuously engage in the intricate task of comprehending and producing cross-modal
content. The AI community correspondingly emerges varied forms of cross-modal learning tasks,
such as Image/Video Captioning [100, 16, 56, 56, 27, 49], Image/Video Question Answering [94,
90, 48, 98, 3], Text-to-Image/Video/Speech Synthesis [74, 30, 84, 23, 17, 51, 33], Image-to-Video
Synthesis [18, 37] and more, all of which have experienced rapid advancements in past decades.
Researchers have proposed highly effective multimodal encoders, with the aim of constructing
unified representations encompassing various modalities. Meanwhile, owing to the distinct feature
spaces of different modalities, it is essential to undertake modality alignment learning. Moreover,
to generate high-quality content, a multitude of strong-performing methods have been proposed,
such as Transformer [82, 102, 17, 24], GANs [53, 7, 93, 111], VAEs [81, 67], Flow models [73, 6]
and the current state-of-the-art diffusion models [31, 64, 57, 22, 68]. Especially, the diffusion-based
methods have recently delivered remarkable performance in a plethora of cross-modal generation
tasks, such as DALL-E [66], CogView [17], and Pariti [99]. While all previous efforts of cross-modal
learning are limited to the comprehension of multimodal inputs only, CoDi [78] lately presents
groundbreaking development. Leveraging the power of diffusion models, CoDi possesses the ability
to generate any combination of output modalities, including language, images, videos, or audio, from
any combination of input modalities in parallel. Regrettably, CoDi might still fall short of achieving
human-like deep reasoning of input content, with only parallel cross-modal feeding&generation.

Multimodal Large Language Models LLMs have already made profound impacts and revolutions
on the entire AI community and beyond. The most notable LLMs, i.e., OpenAI’s ChatGPT [59] and
GPT4 [60], with alignment techniques such as instruction tuning [61, 47, 105, 52] and reinforcement
learning from human feedback (RLHF) [75], have demonstrated remarkable language understanding
and reasoning abilities. And a series of open-source LLMs, e.g., Flan-T5 [13], Vicuna [12], LLaMA
[80] and Alpaca [79], have greatly spurred advancement and made contributions to the community
[110, 101]. Afterward, significant efforts have been made to construct LLMs dealing with multimodal
inputs and tasks, leading to the development of MM-LLMs.

On the one hand, most of the researchers build fundamental MM-LLMs by aligning the well-trained
encoders of various modalities to the textual feature space of LLMs, so as to let LLMs perceive other
modal inputs [35, 110, 76, 40]. For example, Flamingo [1] uses a cross-attention layer to connect a
frozen image encoder to the LLMs. BLIP-2 [43] employs a Q-Former to translate the input image
queries to the LLMs. LLaVA [52] employs a simple projection scheme to connect image features into
the word embedding space. There are also various similar practices for building MM-LLMs that are
able to understand videos (e.g., Video-Chat [44] and Video-LLaMA [104]), audios (e.g., SpeechGPT
[103]), etc. Profoundly, PandaGPT [77] achieves a comprehensive understanding of six different
modalities simultaneously by integrating the multimodal encoder, i.e., ImageBind [25].

Nevertheless, these MM-LLMs all are subject to the limitation of only perceiving multimodal data,
without generating content in arbitrary modalities. To achieve LLMs with both multimodal input
and output, some thus explore employing LLMs as decision-makers, and utilizing existing off-the-
shelf multimodal encoders and decoders as tools to execute multimodal input and output, such as
Visual visual-ChatGPT [88], HuggingGPT [72], and AudioGPT [34]. As aforementioned, passing
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Figure 2: NExT-GPT inference process. Grey colors denote the deactivation of the modules.

messages between modules with pure texts (i.e., LLM textual instruction) under the discrete pipeline
scheme will inevitably introduce noises. Also lacking comprehensive tuning across the whole system
significantly limits the efficacy of semantics understanding. Our work takes the mutual benefits of
both the above two types, i.e., learning an any-to-any MM-LLM in an end-to-end manner.

3 Overall Architecture
Figure 1 presents the schematic overview of the framework. NExT-GPT consists of three main tiers:
the encoding stage, the LLM understanding and reasoning stage, and the decoding stage.

Multimodal Encoding Stage First, we leverage existing well-established models to encode inputs
of various modalities. There are a set of alternatives of encoders for different modalities, e.g., Q-
Former [43], ViT [19], CLIP [65]. Here we take advantage of the ImageBind [25], which is a unified
high-performance encoder across six modalities. With ImageBind, we are spared from managing
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Encoder Input Projection LLM Output Projection Diffusion

Name Param Name Param Name Param Name Param Name Param

Text — — — — — — — —

Image Vicuna [12] 7B Transformer 31M SD [68] 1.3B

Audio (LoRA 33M ) Transformer 31M AudioLDM [51] 975M

Video
ImageBind [25] 1.2B Linear 4M

Transformer 32M Zeroscope [8] 1.8B

Table 1: Summary of system configuration. Only 1% parameters need updating.

many numbers of heterogeneous modal encoders. Then, via the linear projection layer, different input
representations are mapped into language-like representations that are comprehensible to the LLM.

LLM Understanding and Reasoning Stage An LLM is used as the core agent of NExT-GPT.
Technically, we employ the Vicuna2 [12], which is the open-source text-based LLM that is widely
used in the existing MM-LLMs [77, 104]. LLM takes as input the representations from different
modalities and carries out semantic understanding and reasoning over the inputs. It outputs 1) the
textual responses directly, and 2) signal tokens of each modality that serve as instructions to dictate
the decoding layers whether to generate multimodal contents, and what content to produce if yes.

Multimodal Generation Stage Receiving the multimodal signals with specific instructions from
LLM (if any), the Transformer-based output projection layers map the signal token representations
into the ones that are understandable to following multimodal decoders. Technically, we employ the
current off-the-shelf latent conditioned diffusion models of different modal generations, i.e., Stable
Diffusion (SD)3 for image synthesis [68], Zeroscope4 for video synthesis [8], and AudioLDM5 for
audio synthesis [51]. The signal representations are fed into the condition encoders of the conditioned
diffusion models for content generation.

In Table 1 we summarize the overall system configurations. It is noteworthy that in the entire
system, only the input and output projection layers of lower-scale parameters (compared with
the overall huge capacity framework) are required to be updated during the following learning,
with all the rest encoders and decoders frozen. That is, 131M(=4+33+31+31+32) / [131M +
12.275B(=1.2+7+1.3+1.8+0.975)], only 1% parameters are to be updated. This is also one of
the key advantages of our MM-LLM.

In Figure 2 we further illustrate the inference procedure of NExT-GPT. Given certain user inputs of
any combination of modalities, the corresponding modal encoders, and projectors transform them
into feature representations and pass them to LLM6. Then, LLM decides what content to generate,
i.e., textual tokens, and modality signal tokens. If LLM identifies a certain modality content (except
language) to be produced, a special type of token [40] will be output indicating the activation of
that modality; otherwise, no special token output means deactivation of that modality. Technically,
we design the ‘<IMGi>’ (i = 0, · · · , 4) as image signal tokens; ‘<AUDi>’ (i = 0, · · · , 8) as audio
signal tokens; and ‘<VIDi>’ (i = 0, · · · , 24) as video signal tokens. After LLM, the text responses
are output to the user; while the representations of the signal tokens of certain activated modalities
are passed to the corresponding diffusion decoders for content generation.

4 Lightweight Multimodal Alignment Learning
To bridge the gap between the feature space of different modalities, and ensure fluent semantics
understanding of different inputs, it is essential to perform alignment learning for NExT-GPT. Since
we design the loosely-coupled system with mainly three tiers, we only need to update the two
projection layers at the encoding side and decoding side.

4.1 Encoding-side LLM-centric Multimodal Alignment
Following the common practice of existing MM-LLMs, we consider aligning different inputting
multimodal features with the text feature space, the representations that are understandable to the core

2https://huggingface.co/lmsys/vicuna-7b-delta-v0, 7B, version 0
3https://huggingface.co/runwayml/stable-diffusion-v1-5, version 1.5.
4https://huggingface.co/cerspense/zeroscope_v2_576w, version zeroscope_v2_576w.
5https://audioldm.github.io/, version audioldm-l-full.
6Except the text inputs, which will be directly fed into LLM.
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Figure 3: Illustration of the lightweight multimodal alignment learning of encoding and decoding.

LLM. This is thus intuitively named the LLM-centric multimodal alignment learning. To accomplish
the alignment, we prepare the ‘X-caption’ pair (‘X’ stands for image, audio, or video) data from
existing corpus and benchmarks. We enforce LLM to produce the caption of each input modality
against the gold caption. Figure 3(a) illustrates the learning process.

4.2 Decoding-side Instruction-following Alignment
On the decoding end, we have integrated pre-trained conditional diffusion models from external
resources. Our main purpose is to align the diffusion models with LLM’s output instructions.
However, performing a full-scale alignment process between each diffusion model and the LLM
would entail a significant computational burden. Alternatively, we here explore a more efficient
approach, decoding-side instruction-following alignment, as depicted in Figure 3(b). Specifically,
since diffusion models of various modalities are conditioned solely on textual token inputs. This
conditioning diverges significantly from the modal signal tokens from LLM in our system, which
leads to a gap in the diffusion models’ accurate interpretation of the instructions from LLM. Thus, we
consider minimizing the distance between the LLM’s modal signal token representations (after each
Transformer-based project layer) and the conditional text representations of the diffusion models.
Since only the textual condition encoders are used (with the diffusion backbone frozen), the learning
is merely based on the purely captioning texts, i.e., without any visual or audio inputs. This also
ensures highly lightweight training.

5 Modality-switching Instruction Tuning
5.1 Instruction Tuning
Despite aligning both the encoding and decoding ends with LLM, there remains a gap towards
the goal of enabling the overall system to faithfully follow and understand users’ instructions and
generate desired multimodal outputs. To address this, further instruction tuning (IT) [97, 77, 52]
is deemed necessary to enhance the capabilities and controllability of LLM. IT involves additional
training of overall MM-LLMs using ‘(INPUT, OUTPUT)’ pairs, where ‘INPUT’ represents the user’s
instruction, and ‘OUTPUT’ signifies the desired model output that conforms to the given instruction.
Technically, we leverage LoRA [32] to enable a small subset of parameters within NExT-GPT to be
updated concurrently with two layers of projection during the IT phase. As illustrated in Figure 4,
when an IT dialogue sample is fed into the system, the LLM reconstructs and generates the textual
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Figure 4: Illustration of modality-switching instruction tuning.

content of input (and represents the multimodal content with the multimodal signal tokens). The
optimization is imposed based on gold annotations and LLM’s outputs. In addition to the LLM tuning,
we also fine-tune the decoding end of NExT-GPT. We align the modal signal token representation
encoded by the output projection with the gold multimodal caption representation encoded by the
diffusion condition encoder. Thereby, the comprehensive tuning process brings closer to the goal of
faithful and effective interaction with users.

5.2 Instruction Dataset
For the IT of NExT-GPT, we consider the following datasets.

‘Text+X’ — ‘Text’ Data The commonly used datasets for MM-LLM IT entail inputs of both
texts and multimodal contents (i.e., ‘X’ could be the image, video, audio, or others), and the outputs
are textual responses from LLM. There are well-established data of this type, e.g., LLaVA [52],
miniGPT-4 [110], VideoChat [44], where we directly employ them for our tuning purpose.

‘Text’ — ‘Text+X’ Data Significantly unlike existing MM-LLMs, in our any-to-any scenario, the
target not only includes the generations of texts, but also the multimodal contents, i.e., ‘Text+X’.
Thus, we construct the ‘Text’ — ‘Text+X’ data, i.e., text-to-multimodal (namely T2M) data. Based
on the rich volume of ‘X-caption’ pairs from the existing corpus and benchmarks [71, 50, 5, 38], with
some templates, we borrow GPT-4 to produce varied textual instructions to wrap the captions, and
result in the data.

MosIT Data Crafting high-quality instructions that comprehensively cover the desired target be-
haviors is non-trivial. We notice that the above IT datasets fail to meet the requirements for our
any-to-any MM-LLM scenario. Firstly, during a human-machine interaction, users and LLM involve
diverse and dynamically changing modalities in their inputs and outputs. Additionally, we allow
multi-turn conversations in the process, and thus processing and understanding of complex user
intentions is required. However, the above two types of data lack variable modalities, and also are
relatively short in dialogues, failing to mimic real-world scenarios adequately.

To facilitate the development of any-to-any MM-LLM, we propose a novel Modality-switching
Instruction Tuning (MosIT). MosIT not only supports complex cross-modal understanding and
reasoning but also enables sophisticated multimodal content generation. In conjunction with MosIT,
we manually and meticulously construct a high-quality dataset. The MosIT data encompasses a wide
range of multimodal inputs and outputs, offering the necessary complexity and variability to facilitate
the training of MM-LLMs that can handle diverse user interactions and deliver desired responses
accurately. Specifically, we design some template dialogue examples between a ‘Human’ role and a
‘Machine’ role, based on which we prompt the GPT-4 to generate more conversations under various
scenarios with more than 100 topics or keywords. The interactions are required to be diversified,
e.g., including both straightforward and implicit requirements by the ‘Human’, and execution of
perception, reasoning, suggestion, planning, etc., by the ‘Machine’. And the interactive content
should be logically connected and semantically inherent and complex, with in-depth reasoning details
in each response by the ‘Machine’. Each conversation should include 3-7 turns (i.e., QA pairs), where
the ‘Human’-‘Machine’ interactions should involve multiple modalities at either the input or output
side, and switch the modalities alternately. Whenever containing multimodal contents (e.g., image,
audio, and video) in the conversations, we look for the best-matched contents from the external
resources, including the retrieval systems, e.g., Youtube7, and even AIGC tools, e.g., Stable-XL [63],

7https://www.youtube.com/
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Method FID (↓)
CogVideo [17] 27.10
GLIDE [58] 12.24
CoDi [78] 11.26
SD [68] 11.21
NExT-GPT 11.28

Table 3: Text-to-image
generation results on
COCO-caption data [50].

Method FD (↓) IS (↑)
DiffSound [95] 47.68 4.01
AudioLDM-S [51] 29.48 6.90
AudioLDM-L [51] 23.31 8.13
CoDi [78] 22.90 8.77
NExT-GPT 23.58 8.35

Table 4: Text-to-audio genera-
tion results on AudioCaps [38].

Method FID (↓) CLIPSIM (↑)
CogVideo [30] 23.59 0.2631
MakeVideo [74] 13.17 0.3049
Latent-VDM [68] 14.25 0.2756
Latent-Shift [2] 15.23 0.2773
CoDi [78] — 0.2890
NExT-GPT 13.04 0.3085

Table 5: Text-to-video generation re-
sults (zero-shot) on MSR-VTT [92].

Method B@4 METEOR CIDEr
Oscar [46] 36.58 30.4 124.12
BLIP-2 [43] 43.7 — 145.8
OFA [86] 44.9 32.5 154.9
CoDi [78] 40.2 31.0 149.9
NExT-GPT 44.3 32.9 156.7

Table 6: Image-to-text genera-
tion (image captioning) results on
COCO-caption data [50].

Method SPIDEr CIDEr
AudioCaps [38] 0.369 0.593
BART [26] 0.465 0.753
AL-MixGen [39] 0.466 0.755
CoDi [78] 0.480 0.789
NExT-GPT 0.521 0.802

Table 7: Audio-to-text genera-
tion (audio captioning) results
on AudioCaps [38].

Method B@4 METEOR
ORG-TRL [106] 43.6 28.8
GIT [85] 54.8 33.1
mPLUG-2 [91] 57.8 34.9
CoDi [78] 52.1 32.5
NExT-GPT 58.4 38.5

Table 8: Video-to-text genera-
tion (video captioning) results
on MSR-VTT [92].

Method
Object Background

CLIP (↑) FID (↓) CLIP (↑) FID (↓)
PTP [29] 30.33 9.58 31.55 13.92
BLDM [4] 29.95 6.14 30.38 20.44
DiffEdit [14] 29.30 3.78 26.92 1.74
PFB-Diff [36] 30.81 5.93 32.25 13.77
NExT-GPT 29.31 6.52 27.29 15.20

Table 9: Text+image-to-image genera-
tion (text-conditioned image editing) re-
sults on COCO data [50].

Method MCD (↓)
CampNet [87] 0.380
MakeAudio [33] 0.375
AudioLDM-L [51] 0.349
NExT-GPT 0.302

Table 10: Text+audio-
to-audio generation (text-
conditioned speech edit-
ing) results on VCTK
data [83].

Method CLIP-T (↑) CLIP-I (↑)
CogVideo [30] 0.2391 0.9064
TuneVideo [89] 0.2758 0.9240
SDEdit [55] 0.2775 0.8731
Pix2Video [9] 0.2891 0.9767
NExT-GPT 0.2683 0.9645

Table 11: Text+video-to-video
generation (text-conditioned
video editing) results on DAVIS
data [62].

Midjourney8. After human inspections and filtering of inappropriate instances, we obtain a total of
5K dialogues in low quality. In Table 2 we compare the existing multimodal IT datasets with our
MosIT data.

6 Experiments
6.1 Any-to-any Multimodal Generation
We try to quantify the generation quality of NExT-GPT on certain benchmark datasets under some
common settings, such as text-to-X generation, X-to-text generation, and Text-conditioned modality
editing. We mimic the task by taking only one turn of interaction between the user and the model.

• ‘Text’ — ‘X’ Generation represents the most frequent tasks of text-conditioned modal synthesis.
Table 3, 4 and 5 present the comparisons between ours and some state-of-the-art systems. Overall
NExT-GPT shows nice performance on par with the values from the best-performing baselines.

• ‘X’ — ‘Text’ Generation represent the tasks of modal captioning. Table 6, 7 and 8 show
the results on different tasks. Overall, we find that NExT-GPT can mostly achieve much better
performance on the X-to-text generation than the CoDi baseline, owing to the direct generation of
texts from LLM, which is inherently expertized by the LLM.

• ‘Text+X’ — ‘X’ Generation represents a task category of text-conditioned modal editing. Table
9, 10 and 11 show the performances on different tasks. Compared with the above two types of tasks,
NExT-GPT could be not that superior for the text-conditioned modal editing tasks. Yet, it still shows
competitive performance.

8https://www.midjourney.com/
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Figure 5: Comparative performance of NExT-GPT on various complex cross-modal conversions.

• Human Evaluation on Complex Any-to-any QA We also carry out evaluation on some more
scenarios where there are complicated cross-modal interactions between inputs and outputs. We
mainly compare the model performance for the settings with different modality conversions. As no
standard benchmark can be leveraged, here we adopt human evaluation. We ask several evaluators to
score the performance of NExT-GPT on a scale from 1 to 10. Figure 5 shows the comparisons. We
find NExT-GPT is more competent in producing images, compared with the generations on videos
and audio. Also generating mixed combinations of multimodal content is slightly inferior to the
generation of single-modal content, due to the complexity of the latter.

6.2 Example Demonstrations
To demonstrate the effectiveness and potential of our proposed NExT-GPT in developing human-like
conversational agents, here we further offer compelling examples that vividly illustrate the system’s
exceptional capacity to comprehend and reason contents across various modalities in any combination.
Figure 6, 7, 8, 9, 10 and 11 show the examples from NExT-GPT. Go to the project page for more
examples and access the dynamic video and audio contents.

7 Conclusion
In this work, we present an end-to-end general-purpose any-to-any multimodal Large Language Model
(MM-LLM). By connecting an LLM with multimodal adaptors and different diffusion decoders,
NExT-GPT is capable of perceiving inputs and generating outputs in any combination of text, images,
videos, and audio. Harnessing the existing well-trained highly-performing encoders and decoders,
training NExT-GPT only entails a few number of parameters (1%) of certain projection layers,
which not only benefits low costs but also facilitates convenient expansion to future more potential
modalities. To enable our NExT-GPT with complex cross-modal semantic understanding and content
generation, we introduce a modality-switching instruction tuning (MosIT), and manually curated a
high-quality dataset for MosIT. Overall, our research showcases the potential of any-to-any MM-
LLMs in bridging the gap between various modalities and paving the way for more human-like AI
systems in the future.

Limitation and Future work As future work, there are at least following four avenues to explore.

i) Modalities & Tasks Expansion: Due to resource limitations, currently, our system supports input
and output in four modalities: language, images, videos, and audio. Next, we plan to extend this to
accommodate even more modalities (e.g., web page, 3D vision, heat map, tables&figures) and tasks
(e.g., object detection, segmentation, grounding and tracking), broadening the system’s applicability
such that it becomes more universal.

ii) LLM Variants: Currently, we have implemented the 7B Vicuna version of the LLM. Our next
plans involve incorporating various LLM types and sizes, allowing practitioners to choose the most
suitable one for their specific requirements.

10
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iii) Multimodal Generation Strategies: While our system excels in generating content across
modalities, the quality of generative outputs can sometimes be limited by the capabilities of the
diffusion model. It is very promising to explore the integration of retrieval-based approaches to
complement the generative process, potentially improving the overall system’s performance.

iv) MosIT Dataset Expansion: Currently, our IT dataset has room for expansion. We intend to
significantly increase the amount of annotated data, ensuring a more comprehensive and diverse set
of instructions to further enhance the MM-LLMs’ ability to understand and follow user prompts
effectively.

Figure 6: Example of Text+Image → Text+Audio.
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Figure 7: Example of Text → Text+Image+Video+Audio.
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Figure 8: Example of Text+Image → Text+Image+Video+Audio.
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Figure 9: Example of Text+Video → Text+Image.
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Figure 10: Example of Text+Audio → Text+Image+Video.
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Figure 11: Example of Text+Video → Text+Audio.
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